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In this work, classic intensity formulae were united with an

empirical spot-fading model in order to calculate the diameter

of a spherical crystal that will scatter the required number of

photons per spot at a desired resolution over the radiation-

damage-limited lifetime. The influences of molecular weight,

solvent content, Wilson B factor, X-ray wavelength and

attenuation on scattering power and dose were all included.

Taking the net photon count in a spot as the only source of

noise, a complete data set with a signal-to-noise ratio of 2 at

2 Å resolution was predicted to be attainable from a perfect

lysozyme crystal sphere 1.2 mm in diameter and two different

models of photoelectron escape reduced this to 0.5 or 0.34 mm.

These represent 15-fold to 700-fold less scattering power than

the smallest experimentally determined crystal size to date,

but the gap was shown to be consistent with the background

scattering level of the relevant experiment. These results

suggest that reduction of background photons and diffraction

spot size on the detector are the principal paths to improving

crystallographic data quality beyond current limits.
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1. Introduction

The last 15 years have seen many experimental estimates of

how small a protein crystal can be and still yield a complete

data set (Gonzalez & Nave, 1994; Glaeser et al., 2000; Teng &

Moffat, 2000, 2002; Facciotti et al., 2003; Sliz et al., 2003; Li et

al., 2004; Nelson et al., 2005; Sawaya et al., 2007; Coulibaly et

al., 2007; Standfuss et al., 2007; Moukhametzianov et al., 2008;

reviewed by Holton, 2009) and this size has been decreasing as

technology improves. But is there a theoretical limit? The

work presented here establishes a firm theoretical framework

for computing the absolute signal available from very small

macromolecular crystals and every effort is made to explicitly

and unambiguously spell out the definitions and derivations.

The International Tables for Crystallography (Wilson &

Prince, 1999) contain most of the critical pieces of the puzzle

assembled here and the original references are spread out

over nearly a century of literature.

Here, we endeavor to keep the theory general and inde-

pendent of the limitations of current diffraction hardware. For

example, the time-honored practice of recording the three-

dimensional diffraction pattern on as few images as possible

was not simply an effort to save money on film, but to mini-

mize noise intrinsic to the detection process such as ‘fog’ on

the film or the read-out circuit of a charge-coupled device

(CCD). Counting detectors such as multi-wire (Cork et al.,

1974) and pixel arrays (Kraft et al., 2009) do not have this kind

of noise and the optimal data-collection strategy with these

detectors is different (Xuong et al., 1985; Schulze-Briese et al.,



2007). For simplicity, in the present work we consider the

X-ray detector and indeed the entire diffractometer to be an

ideal device subject only to the shot noise of the net spot

photons themselves (the square root of the number of counts).

All other sources of noise, including background scattering,

are neglected until the discussion in x3.2.

The formula for the integrated intensity of a spot was

introduced by Darwin (1914), but much subsequent work was

required to fill out the original theory. For example, Darwin’s

variable ‘f ’ required the development of quantum theory to

explain its observed value (Debye, 1915, 1988). The resulting

orbital shapes (Slater, 1929) led directly to the cross-sections

needed to compute absorption effects in the 1960s and steady

improvements continue to this day (Hubbell, 2006). Only

recently has it become clearly established that radiation

damage at cryogenic temperatures is proportional to dose

(Henderson, 1990; Gonzalez & Nave, 1994; Glaeser et al.,

2000; Sliz et al., 2003; Leiros et al., 2006; Owen et al., 2006;

Garman & McSweeney, 2007; Garman & Nave, 2009; Holton,

2009) and this understanding enabled the present work.

The intensity of a Bragg spot is not simply the square of

the structure factor, but depends on several other factors

including exposure time, crystal volume and the geometry of

diffraction. Consequently, the absolute number of photons in a

spot (which determines the maximum possible signal-to-noise

ratio) depends on exactly where the spot falls on the detector

surface. Algorithms for computing these intensity ‘correction’

factors are encoded into most data-processing programs, but

the source codes are not always available and in many cases

the implemented corrections only apply to particular camera

geometries. Therefore, the reproducibility and generality of

the results presented here requires a clear description of each

correction factor and we begin by defining the relevant co-

ordinate system.

2. Methods

2.1. Coordinate system

There are many possible ways to assign xyz coordinates to

a diffractometer; unfortunately, most of them have been

employed at one time or another and few data-processing

programs share exactly the same convention. Here, we will

adopt a ‘classic’ coordinate system essentially identical to that

described in chapter 7 of Arndt & Wonacott (1977), which

is also the coordinate system used by the data-processing

program MOSFLM (Leslie, 2006). In this system, x is the

direction of the X-ray beam, z is the (horizontal) spindle axis

and y is ‘up’ (opposing gravity) or perpendicular to the page in

Fig. 1.

2.2. Spot intensity

Typically, crystallographic data-processing and model-

refinement programs assign an arbitrary ‘scale factor’ for the

observed spot intensities to put them on the same scale as

the structure factors calculated from the model, but the exact

relationship between the intensity of a fully recorded spot and

the square of the structure factor is given by Darwin’s formula

(Darwin, 1914, 1922; Blundell & Johnson, 1976) and instruc-

tive re-derivations can be found in textbooks by James (1962)

and Woolfson (1997),

I ¼ Ibeamr2
e

Vxtal

Vcell

�
�3L

!Vcell

P � A � jFj2; ð1Þ

where I is the integrated spot intensity (photons/spot), Ibeam is

the intensity of the incident beam (photons s�1 m�2), re is the

classical electron radius (2.818 � 10�15 m), Vxtal is the illu-

minated volume of the crystal (in m3), Vcell is the volume of the

crystal unit cell (in m3), � is the X-ray wavelength (in m), ! is

the angular velocity of the crystal (radians s�1; x2.8), L is the

Lorentz factor (speed/speed; x2.3), P is the polarization factor

(photons/photons; x2.4), A is the X-ray transmittance of the

path through the crystal to the spot (photons/photons; x2.5)

and F is the structure factor of the unit cell at the relp of

interest (electron equivalents; x2.7).

The abbreviation ‘relp’ (reciprocal-lattice point) is used to

denote a particular point in reciprocal space, distinct from its

symmetry mates (Ramachandran & Wooster, 1951; Helliwell,

1999), and here we use ‘spot’ to refer to a single observation of

a relp and ‘hkl’ to indicate the sum of all symmetry-equivalent

spots (merging anomalous pairs). Note that all quantities

entered into (1) are in metre–kilogram–second (MKS) units,

including the X-ray wavelength (�), and that the units of

‘intensity’ for spots (photons/spot) are not the same as those

for either the incident beam (photons s�1 m�2) or classical

electron scattering (photons sr�1). Despite this, all of these

quantities remain commonly referred to as ‘intensity’, leading
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Figure 1
Coordinate system. The x axis is occupied by the X-ray beam and the
spindle rotates the crystal (at the origin) about the z axis. The y axis is not
shown as it is very nearly perpendicular to the page. The reciprocal-lattice
point (relp) of interest is described here by the circle it traces out as the
crystal is rotated. Note that it intersects the Ewald sphere twice and that
the ‘penetration speed’ is the component of the relp’s velocity that is
perpendicular to the Ewald sphere surface. The ratio of the ‘actual speed’
to the ‘penetration speed’ is the Lorentz factor. The diffracted ray passes
through the point of intersection, but evolves from the center of the
Ewald sphere (not the origin!), which is an unfortunate conceptual flaw in
Ewald’s construction. Nevertheless, the take-off angle (2�) obtained is the
same as that observed in real space. The angles � and � used in (3) and
Appendix C are shown.



to a considerable amount of confusion if the units are not

given explicitly. The change of units arises because the full

spot intensity (photons/spot) is obtained by integrating over

the relp as it moves through the Ewald sphere (Ewald, 1913;

Arndt & Wonacott, 1977; Helliwell, 1999) and therefore

several geometric factors must be taken into account.

Experimental confirmation of Darwin’s formula has been

presented by Moseley & Darwin (1913), Bragg et al. (1921a,b,

1922), Compton & Freeman (1922) and many others since. For

an example calculation using (1), consider a 100 mm diameter

spherical protein crystal with all three unit-cell edges 50 Å

long. Assume that for a particular relp at 2 Å resolution we

have F = 170 electron equivalents (see x2.7) and further

assume some crystal orientation that assigns L = 2.2, P = 0.92

and A = 96% to this relp (see xx2.3, 2.4 and 2.5, respectively).

If the crystal rotates at 1� s�1 in a uniform beam of 1 Å X-rays

with 1012 photons s�1 passing into the 100 mm diameter circular

cross-section of the crystal, then (1) predicts an integrated full

spot intensity of 109 011 photons. This calculation was found

to be in remarkable agreement with experimentally observed

spot intensities from a lysozyme crystal (not shown) on the

protein crystallography beamline 8.3.1 at the Advanced Light

Source (instrument described by MacDowell et al., 2004).

Once Ibeam had been calibrated (Owen et al., 2009), the

discrepancy between calculation and experiment was essen-

tially the uncertainty in our visual estimate of Vxtal (about

15%).

The flux density Ibeam is a constant in (1), which implies that

the crystal is ‘bathed’ in a ‘flat-top’ or ‘top-hat’ beam. Real

X-ray beams are seldom this perfect, but any crystal in any

beam may be formally broken up into tiny cubes small enough

for Ibeam to be considered constant over each cube and the

total spot intensity obtained by summing the results of (1) for

all the cubes. However, if Ibeam is the same for every cube there

is clearly no need to break up the crystal; conversely, if the

crystal has constant thickness along the beam direction then

the average flux density experienced by the crystal (regardless

of beam shape) may be used as Ibeam in (1). Only if both the

crystal shape and the beam profile have irregular shapes does

(1) need to be integrated over the beam profile and crystal

volume. However, we show in x2.11 and Appendix C

(deposited as supplementary material1) that the damage-

limited spot intensity is independent of Ibeam, obviating the

need to consider beam and crystal shapes, so for simplicity in

this work we will consider a spherical crystal ‘bathed’ in a top-

hat beam.

Note that (1) does not depend on the mosaic structure of

the crystal and indeed a crystal consisting of a single mosaic

domain or thousands of mosaic domains will still yield exactly

the same integrated spot intensity (I) as long as the mosaic

domains are small when compared with the attenuation depth

(��1) of the X-rays in the crystal. This depth is typically

several millimetres for 1 Å X-rays (see the end of x2.5) and

protein crystals this large are very rare, let alone single-

domain crystals (Snell et al., 2003). A common misconception

that protein microcrystals consisting of a single mosaic domain

will produce more intense spots than expected from Darwin’s

formula seems to have arisen from the above-mentioned

confusion over the several possible meanings of the word

‘intensity’ (discussed further in x2.7). In truth, however, (1)

was derived for small and single-domain crystals and also

applies to the ‘ideally imperfect’ case of a large crystal with

many mosaic domains (Darwin, 1922). Large single-domain

crystals that approach the length scale of the attenuation

depth of the X-rays actually produce weaker spots than

predicted by (1) owing to extinction effects (James, 1962;

Woolfson, 1997; Sabine, 1999; Authier, 2004).

2.3. Lorentz factor

The Lorentz factor L in (1) is always greater than one and

is the ratio of the speed of a rotating relp to the ‘penetration

speed’ at which it transits the Ewald sphere (Fig. 1). This

Lorentz factor in crystallography2 is not to be confused with

its inverse, the Lorentz correction L�1 which data-processing

programs such as MOSFLM (Leslie, 2006) use to ‘correct’ for

this effect by multiplying observed integrated intensities by

L�1. The description of the Lorentz factor in International

Tables for Crystallography (Lipson & Langford, 1999) notes

that some confusion has arisen over the definition of the

Lorentz factor because Lorentz never published it. Instead, it

seems he wrote a letter to Debye, who included it as a second

note added in proof (Debye, 1914, 1988).

Essentially, the Lorentz factor accounts for how the inte-

grated intensity (photons/spot) of a relp will be higher if it

moves slowly through the Bragg condition than if it moves

quickly. Indeed, the angular velocity of the crystal (!) divided

by the Lorentz factor (L) is the angular velocity of the relp as

‘seen’ from the origin (see Fig. 1). This geometric correction

is therefore grouped with other geometric factors in (1) such

as !. The cube of the wavelength (�3) and one of the unit-cell

volume (Vcell) terms are also geometric corrections since these

are involved in the size of the integration volume in reciprocal

space (chapter 6 of Woolfson, 1997).

It is instructive to consider the relationship between the

Lorentz factor and the spot position on the detector. This will

obviously depend on the camera geometry, but in the common

case in which the crystal rotation axis is perpendicular to the

X-ray beam the Lorentz factor (L) is given by

L ¼
1

ðsin2 2� � �2Þ
1=2

ð2aÞ

�? ¼ cos 2�Zdet=Xstf; ð2bÞ

where � is the Bragg angle, � (�d*�ẑz) is a normalized projection

of the relp vector onto the rotation axis (z), �? is � in terms of

spot coordinates on a flat detector normal to the incident

beam, Zdet is the coordinate of the diffraction spot on the
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1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: BA5148). Services for accessing this material are described at the
back of the journal.

2 Note that there is also a ‘Lorentz factor’ in the Theory of Relativity, which
has nothing to do with the Lorentz factor in crystallography other than sharing
the same namesake.



detector along the axis parallel to the rotation axis (relative to

the beam center in mm) and Xstf is the sample-to-detector

distance along the direct-beam path (in mm).

The Bragg angle � is defined as half of the angle between

the direct-beam path and the diffracted ray (see Fig. 1). Any

given relp can be represented as a vector d* that will always

have length d* = 1/d, where d is the d-spacing (in Å) of the

spot. No matter how the crystal is rotated, the d-spacing of a

spot does not change. The polar coordinate � (Helliwell, 1999)

is calculated by taking the z component of d* (ẑz is the unit

vector along the z axis) and multiplying it by the X-ray

wavelength � (in Å). This is because the z component of d*

has dimensions of Å�1 and � must be dimensionless to be

meaningfully related to sin�.
In the also common case in which the detector is a flat plane

and normal to the incident X-ray beam � may be conveniently

replaced with �? from (2b). However, moving the detector

does not change the L of a given relp and �? serves simply as a

convenient way to map the Lorentz factor onto the detector

face. For arbitrary detector positions �must be computed from

the spindle geometry and in the general case of the beam not

being perfectly normal to the rotation axis L must be calcu-

lated by taking the projection of the relp velocity vector along

the diffracted ray (as shown in Fig. 1).

Arbitrary rotations of the crystal will rotate the vector d* by

exactly the same angles and if the crystal is oriented such that

d* approaches the spindle axis (z axis) it will eventually cross

into a ‘blind region’ (Arndt & Wonacott, 1977; Helliwell, 1999)

where spindle rotation alone cannot bring the relp onto the

Ewald sphere. As the relp approaches this blind region the

denominator of (2a) becomes smaller and smaller and the

Lorentz factor approaches infinity. Crossing into the blind

region, the quantity under the square root in (2a) becomes

zero or less and the Lorentz factor becomes undefined.

It is important to note, however, that an infinite Lorentz

factor does not actually imply an infinite spot intensity. This is

because the relps are not infinitely sharp points, but rather

occupy a volume in reciprocal space that must pass completely

through the Ewald sphere for (1) to be valid. In fact, the size

and shape of this reciprocal-space volume is simply the

Fourier transform of the size and shape of the mosaic domain

producing it, but a detailed discussion of spot shapes is beyond

the scope of this work. It will suffice here to say that the blind

region is effectively enlarged by an angle comparable to the

crystal mosaic spread, ‘swallowing’ the infinite Lorentz factors.

The few spots that are close to the rotation axis will indeed

have very large Lorentz factors, but also a very wide angular

range of reflection (rocking width), so on a typical diffraction

image these high-L spots are roughly the same intensity

(photons/spot) as any other. A discussion of rotation range

will continue in x2.8.

2.4. Polarization factor

The polarization factor P is always less than one and

accounts for losses of scattering efficiency when the incident-

beam and scattered-beam E-vectors do not line up. That is,

the E-vector of any electromagnetic wave must always be

perpendicular to the direction of travel (Maxwell, 1865;

Purcell, 1985), but the direction of travel changes upon scat-

tering. P is simply the dot product of the E-vectors of the

incident and scattered waves (averaged over all incident

E-vectors) and here we use the convenient expression given

by Drenth (1999) (Azároff, 1955; Kahn et al., 1982),

2P ¼ 1þ cos2 2� � I cos 2� sin2 2�; ð3Þ

where P is the polarization factor used in (1) (photons/

photons), � is the Bragg angle, � is the angle between the

projections of the z axis and the diffracted ray onto a plane

normal to the incident beam and I is the degree of polar-

ization.

Note that the polarization factor P varies from spot to spot

whereas I is the ‘polarization’ entered into most diffraction

data-processing programs. I ranges from 1 to 0 to �1 as the

incident E-vector varies from ‘horizontal’ (along the z axis) to

unpolarized to ‘vertical’, respectively. The ‘plane normal to

the incident beam’ invoked to define � here is any plane

parallel to both the y and z axes (see � in Fig. 1 as well as

Arndt & Wonacott, 1977).

Many synchrotron-based diffractometers are designed with

horizontal spindle axes (as defined here) because in this

geometry the strong horizontal polarization of synchrotron

radiation (I close to 1) tends to cancel the Lorentz factor and

the ‘hole’ in scattering owing to polarization at 2� = 90� and

� = 0� coincides with the blind region (x2.3). However, the

average value of the product LP is independent of I (see x2.6)

and therefore spindle orientation has no effect on average

intensity (photons/spot) in a given resolution bin. The only

practical concern is that many data-processing programs

throw out spots with large L because such spots are very

sensitive to small errors in crystal orientation, but even when

L > 5 spots are rejected the ‘penalty’ of a vertical spindle

(I =�1) in the 2 Å bin using 1 Å radiation is only a 10% drop

in photons/hkl (not shown). Indeed, for such data P ranges

from 1 to 0.77 and this variation diminishes further as the

pattern is compressed into lower angles at shorter wavelengths

because (3) depends purely on the geometry of the camera

and not on the X-ray wavelength used. The mechanical

stability advantages of a vertical spindle for small crystals

therefore come at only a marginal cost to photons/spot.

2.5. Sample attenuation

The attenuation factor A in (1) is an average optical

transmittance and is always less than one. For full accuracy,

photons from each point in the X-ray source must be ray-

traced to every accessible part of the crystal volume and from

there out into the spot. The transmittance along each path

depends on the size, shape and atomic composition of the

crystal and any other substances it traverses (including air).

The profile of the beam acts as a ‘weighting function’ and A is

the average transmittance over all possible paths. Given the

potential complexity of the shapes involved, the only general

expression for A is the triple integral
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A ¼
1

VxtalIbeam

R R
xtal

R
Iprofðy; zÞ exp½��airtairðx; y; zÞ ð4Þ

� �xtaltxtalðx; y; zÞ � �looptloopðx; y; zÞ � . . .� dx dy dz;

where A is the attenuation factor (photons/photons), Vxtal

is the volume of the crystal (m3), Ibeam is the total intensity of

the incident beam (photons s�1 m�2), Iprof is the intensity of

the beam profile at the coordinate 0, y, z (photons s�1 m�2),

�x is the attenuation coefficient of substance x, �x
�1 is the

attenuation length (m) and tx is the component of the total

path taken by X-rays through substance x via crystal coordi-

nate x, y, z (m).

The complexity arises because the scattering and attenua-

tion processes must be co-integrated over the illuminated

volume of the crystal (Vxtal). The path taken by the incident

beam is only important up to the point location of the ‘scat-

tering event’ and from there the materials between the scat-

tering event and the location of the diffraction spot must be

considered. This integral can be solved analytically for the

simple case of a flat slab-shaped crystal with uniform � and the

formula for this solution is presented in International Tables

for Crystallography (Maslen, 1999). However, for anything

other than a flat slab there is no analytic solution for (4) and

even a perfect sphere must be evaluated numerically. Never-

theless, a sphere is a convenient ‘average shape’ for a protein

crystal and look-up tables are available for this integral

(Dwiggins, 1975; Flack & Vincent, 1978; Maslen, 1999). For the

calculation at hand, we consider a spherical crystal of radius

R with uniform attenuation coefficient �xtal in a uniform ‘flat-

top’ beam and denote the total transmission of a beam

diffracting at angle 2� simply as

A ¼ Tsphereð2�; �xtal;RÞ; ð5Þ

where A is the attenuation factor (photons/photons), Tsphere

is the numerical solution to (4) for a sphere in a vacuum, 2�
is the angle between the incident and diffracted beams, �xtal

is the attenuation coefficient of the crystal (m�1) and R is the

radius of the spherical crystal (m).

The value of � for each substance is obtained using its

density (�) and the tabulated X-ray cross-sections (Storm &

Israel, 1970; Berger & Hubbell, 1987; Creagh & Helliwell,

1999) of the chemical elements comprising it (reviewed by

Hubbell, 2006). A convenient program for the accurate

calculation of � for a particular protein crystal is RADDOSE

(Murray et al., 2004; Paithankar et al., 2009); for the calcula-

tions presented here we use an average empirical formula for

protein, H49.8C31.8N8.56O9.54S0.249, determined from a survey

(not shown) of the Protein Data Bank (Berman et al., 2002).

Taking 1 Å X-rays, for example, the values for � in protein,

water and the 50% solvent protein crystal used in this work

are 2.78, 2.85 and 2.81 cm�1, respectively. This yields an

attenuation depth ��1
xtal of 3.6 mm, so a 2.5 mm thick protein

crystal is required to reduce a spot intensity (photons/spot) by

half and a 100 mm crystal reduces no spot intensity by more

than �2.7%. Therefore, A is a small correction in typical

cases and only becomes significant if strongly absorbing atoms

are soaked into the crystal (see Holton, 2009) or if long-

wavelength X-rays are used. For example, at the S K edge (5 Å

wavelength) ��1
xtal ’ 32 mm and attenuation can reduce the

spot intensities from a 100 mm crystal by as much as 96%

(A = 0.04).

2.6. Average Lorentz–polarization factor and completeness

Since we are concerned here with the average value of a

spot intensity (photons/spot) at a given resolution, we must

know the average value of the product of the Lorentz and

polarization factors (LP). It is also important to account for

relps that fall into the ‘blind region’ (x2.3) as these will not

contribute to the merged signal of an hkl index at one wave-

length but may contribute at another. The fraction of all relps

in a given resolution bin that can be observed by rotating

about a single axis (fobs) is simply cos� (see Appendix A) and

if we average the product of (2a) and (3) for these accessible

relps (Appendix B) we obtain the exact expressions

hLPi ¼
	

2

1

sin 2�
�

sin 2�

2

� �
ð6aÞ

hLPifobs ¼
	ð3þ cos 4�Þ

16 sin �
; ð6bÞ

where fobs is the fraction of relps at this resolution that will

cross the Ewald sphere using a single axis (cos�) and � is the

Bragg angle. Note the use of angle brackets hi to denote

average values and that hLPi and fobs depend only on the

Bragg angle (�) and thus are independent of wavelength (�)

and the degree of polarization I from (3). However, as

Bragg’s law relates � to �, hLPifobs tends to cancel one of the �
terms in (1), but not exactly.

2.7. Average structure factor

The ‘structure factor’ has been defined (Debye & Scherrer,

1918; Hartree, 1925; Coppens, 1999) as the ratio of the

amplitude of an electromagnetic wave scattered by an object

of interest to that scattered by a single classical electron

(Thomson, 1906; chapter 2 of Woolfson, 1997; Maslen et al.,

1999a), hence Thomson’s classical electron cross-section (re
2)

is included in (1). The F in (1) is the structure factor of one

unit cell, which must be isolated in space for the intensity

(photons sr�1) to be computed directly from F. The other

terms in (1) represent the ratio of the intensity scattered from

a single unit cell to that of the entire crystal.

The apparent amplification from one Vcell term in (1) is

effectively cancelled by the average square structure factor

hF 2
i, which is proportional to Vcell when the number of atoms

per unit volume is fixed. This cancellation arises because the

average scattering from a macromolecule at d-spacings better

than �4 Å is essentially the same as that of a random distri-

bution of atoms (Wilson, 1942, 1949; Shmueli & Wilson, 1999)

and the total structure factor of a random arrangement of

atoms rapidly approaches the structure factor of one atom (fa)

multiplied by the square root of the number of atoms. That is,

when the scattered waves from a group of atoms are in no

way ‘correlated’ with each other, the total scattered intensity

(photons s�1 sr�1) is the sum of the intensities that would be
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seen from individual atoms and the square root of this total

intensity is (by definition) proportional to the structure factor

of the group. Conversely, if the atomic positions are perfectly

correlated (such as in a regular lattice) then the amplitudes

add in a nonrandom way and the intensity scattered in some

directions (diffraction spots) becomes proportional to the

square of the number of atoms. It is important to remember

that this intensity has units of photons s�1 sr�1, where

steradians (sr) are the units of solid angle. For example,

106 photons s�1 emitted in completely random directions are

described by an ‘intensity’ of 106/4	 = 79 577 photons s�1 sr�1

and a square detector pixel 100 mm in size and 100 mm from

the sample (10�6 sr) will intercept about one photon every

12.6 s. Although the intensity (photons s�1 sr�1) scattered by a

crystal of N atoms can be very large, this is only true over a

very small solid angle and as the size of the crystal (or mosaic

domain) increases this solid angle becomes proportionally

smaller. In general, this patch of high intensity is much smaller

than a pixel, but the observed intensity (in photons) is given

by the integral of photons s�1 sr�1 over the entire pixel and

rocking width of the relp (chapters 2 and 6 of Woolfson, 1997).

The change in units whilst using the same word ‘intensity’ has

historically led to some confusion, no doubt arising in part

from Darwin’s formula appearing more than half a century

before the first use of the word ‘pixel’ in the scientific litera-

ture.

It is instructive here to examine how the terms in (1) inter-

relate as the properties of the crystal change. For example, as

atoms are added to random locations in the unit cell (keeping

Vcell fixed for the moment) the structure factor of the unit cell

(F) increases as the square root of the number of atoms in the

unit cell (Ncell) and hence the intensity of a fully recorded spot

(I, in photons) is proportional to Ncell. Conversely, if Vcell is

increased while keeping Vxtal and the total number of atoms in

the crystal constant, then the number of unit cells (Vxtal/Vcell)

decreases while Ncell increases. This causes F to increase as the

square root of Vcell, so F 2 cancels one Vcell term and the net

effect of reorganizing a fixed number of atoms into larger cells

is that individual spot intensities decrease proportionally to

Vcell. Since the number of relps in a given volume of reciprocal

space is also proportional to Vcell, the total summed intensity

of all spots does not change and remains proportional to the

number of atoms in the X-ray beam regardless of how these

atoms are divided into unit cells. Another way to reach the

same conclusion is by the simple fact of conservation of

scattered photons: a given number of atoms will scatter a fixed

number of photons and this number is dictated by the elastic

scattering cross-section of these atoms. The arrangement of

the atoms affects the direction in which these photons are

scattered but cannot change their number and in the limiting

case of very small unit cells that have no relps intersecting the

Ewald sphere all of these photons are scattered in the forward

direction (the relp with index hkl = 000).

The number of scattering atoms per unit volume in protein

crystals varies with solvent content because the atoms of dis-

ordered solvent contribute only very weakly to high-angle

Bragg peaks (Tronrud, 1997; Afonine et al., 2005). Therefore,

the number of atoms contributing to spots at a given resolu-

tion beyond �4 Å can be taken as the number of ordered

(protein) atoms in the unit cell,

Ncell ¼ nsymopnASU

Mr

Ma

� � ¼ Vcell

VM Ma

� � ; ð7Þ

where Ncell is the total number of ordered atoms in the unit

cell (including hydrogen), nsymop is the number of symmetry

operators in the space group, nASU is the number of protein

molecules in the asymmetric unit, Mr is the molecular weight

of the protein (Da or g mol�1), hMai is the number-averaged

protein-atom mass (Mr/Nprotein ’ 7.13 g mol�1), Nprotein is the

total number of ordered atoms in the protein (including

hydrogen), Vcell is the volume of the unit cell (in Å3) and VM

is the Matthews coefficient (Å3 Da�1; Matthews, 1968). Since

protein consists of more than one kind of atom, the effective

per-atom structure factor fa is given by the number-weighted

average of the square structure factors of each atom type,

Ncellhf
2
a i ffi NCf 2

C þ NNf 2
N þ NOf 2

O þ NHf 2
H . . . ; ð8Þ

where hfa
2
i is the number-averaged squared atomic structure

factor of protein (electron2), NEe is the number of ordered

atoms of element Ee and fEe is the atomic structure factor of

element Ee (electron equivalents). In this work, atomic form

factors were calculated using the five-Gaussian fit approx-

imation used by the CCP4 suite (Collaborative Computational

Project, Number 4, 1994; Winn, 2003) and tabulated in Inter-

national Tables for Crystallography Vol. C (Maslen et al.,

1999b). Given the atomic composition of protein provided in

x2.5, this average atomic structure factor of protein is roughly

equivalent to that of boron (fa ’ 5 electrons for forward

scattering). This is because half of the atoms in protein are

hydrogen and this brings down the number-averaged quan-

tities hfa
2
i and hMai. However, the quotient fN

2/14 is at worst

14% greater than hfa
2
i/hMai between 1.5 and 4 Å resolution, so

if 14% error in calculated intensity is tolerable then protein

can be considered to be made of an equal mass of nitrogen.

Note that (8) only applies for �4 Å resolution and better,

where the approximations of Wilson (1942, 1949) hold, and

recall that the structure factors F and fa depend on the

d-spacing of the spot (d). The contribution of each atom is also

modified by an atomic B factor (Maslen et al., 1999a) identical

to those listed in the Protein Data Bank (PDB; Berman et al.,

2002). It is important to note that the B factor is the only

model of intrinsic crystal disorder used in this work. Although

there is reason to believe that disorder in crystals is more

complicated than this (Welberry, 2004), B factors remain the

formalism for describing disorder in crystallographic refine-

ment (Tronrud, 2007; Brunger, 2007; Murshudov et al., 1997,

1999; Winn et al., 2003; Zwart et al., 2008). Fundamentally,

Debye’s argument (Debye, 1915) was that the effect of atomic

displacements from their ideal lattice points is dominated by

the mean square atomic displacement hux
2
i, a result that Waller

(1923, 1925) related to temperature and Ott (1935) derived

rigorously (James, 1962). B factors form a resolution-depen-

dent ‘weight’ for the contribution of each atom and atoms with

low B factors will contribute a larger fraction of the total
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scattering at high angles than atoms with high B factors.

However, as long as the contribution of each protein atom is

similar at a given resolution of interest we may substitute the

Wilson B factor (Wilson, 1949; Shmueli & Wilson, 1999) for all

the atomic B factors and arrive at a general expression for the

average square structure factor of a unit cell,

hF2i ffi
Vcell

VMhMai
hf 2

a i exp �2B
sin �

�

� �2
" #

; ð9Þ

where hF 2
i is the average value of the squared structure factor

of the unit cell (electrons2), Vcell is the volume of the unit cell

(Å3), VM is the Matthews coefficient (Å3 Da�1 or Å3 mol g�1;

Matthews, 1968), hMai is the number-averaged protein-atom

mass (Mr/Nprotein ’ 7.1 g mol�1), hfa
2
i is the number-averaged

squared atomic structure factor of protein (electrons2), B is

the average (Wilson) B factor (Å2), � is the the Bragg angle

and � is the X-ray wavelength (Å).

Since hfai and hMai are essentially constants for protein and

VM also has a restricted range (Matthews, 1968; Kantardjieff &

Rupp, 2003), it is readily apparent that substituting hF 2
i from

(9) for |F |2 in (1) does indeed cancel one of the 1/Vcell terms.

For example, if VM = 2.5 Å3 Da�1, d = 2.5 Å and B = 0, (9)

reduces to hF 2
i ’ 0.2Vcell. That is, given two protein crystals

with the same Vxtal (and Wilson B factor) but one with Vcell

twice that of the other, the average spot intensity from the

large unit-cell crystal will be half of that from the smaller unit-

cell crystal.

2.8. Exposure time and multiplicity

The exposure time (t) does not appear explicitly in (1)

because it is hidden in the rotation speed ! = ��/t, where ��
is the rotation covered during an exposure (in radians). What

happens if the crystal is not rotated during the exposure? Does

the spot intensity become infinite? Of course not, but in reality

it does approach the intensity of the incident beam as the

mosaic spread approaches zero, the mosaic domain volume

becomes large and the X-ray beam becomes perfectly mono-

chromatic and parallel. This limiting case is routinely achieved

with the perfect silicon crystals used in monochromators,

where nearly 100% of X-rays at a desired wavelength are

reflected, a treatment which requires the dynamical theory of

diffraction (Authier, 2004). (1) is based on what is known as

the kinematical approximation to the dynamical theory and

assumes that the mosaic domains are small compared with the

attenuation length of the X-rays in the crystal and that the

drop in the main-beam intensity owing to diffraction is

negligible, which is generally a very good assumption for

protein crystals (see ��1 values at the end of x2.5).

What value then should we choose for ��? It cannot be

smaller than the mosaic spread if we are to fully record a spot,

but since we are interested in collecting a complete data set we

must set �� to the full rotation range of the data set and set t

to the total accumulated exposure time of the data set (tDS).

The average angular velocity for recording each spot is then

simply ! = ��/tDS. Now, several spots belonging to the same

unique hkl index may be observed in a given data set, so

account must be taken of the extra signal available from

merging equivalent observations. Any relp that is not in the

blind region (see x2.3) will cross the Ewald sphere twice during

a 360� rotation, as will the Friedel mate. Therefore, a crystal

belonging to a space group with nsymop symmetry operators

will produce a total of 4nsymop observations of each accessible

unique hkl index (merging Friedel mates). For simplicity, we

will use 360� for �� and multiply the single-spot intensity by

4nsymop,

!eff ¼
2	

4nsymoptDS

; ð10Þ

where !eff is the effective angular velocity for the data set

(radians s�1), 2	 = 360�, nsymop is the number of symmetry

operators in the space group and tDS is the total accumulated

exposure time of a complete data set (s). That is, !eff is the

angular velocity of a 360� data set. In practice, a data-collec-

tion strategy (Dauter, 1999) is often devised to take advantage

of reciprocal-space symmetry and collect a complete data set

with �� < 360�, but such strategies are generally planned

to finish at the end of the crystal’s useful life (discussed in

Appendix C) so tDS is the same. The per-image exposure time

is increased and this decreases !, but it also decreases the

number of observations, so !eff formally does not change. That

is, a strategized data set will contain fewer but proportionally

brighter spots and the radiation-damage-limited photon count

is independent of the collection strategy.

This does not mean a data-collection strategy is useless! A

well designed strategy minimizes the noise accumulation and

resource consumption inherent in using a given set of equip-

ment, such as the read-out noise of a CCD chip or the time

required to collect the data, but a discussion of these concerns

is beyond the scope of this work. Here we are interested in the

absolute minimum crystal size, even given an ideal diffracto-

meter, so we assume that the only source of noise in a spot is

the photon-counting noise (shot noise) of the Bragg-scattered

photons themselves and all other sources of noise, including

the contribution of background scattering, are assumed to be

negligible.

2.9. Absorption and dose

The attenuation factor A described in x2.5 is often incor-

rectly referred to as an ‘absorption factor’, but attenuation

refers to every process for removing photons from a beam of

light, including scattering. Absorption is the process of

transferring energy from the beam into the substance of the

crystal and the amount of energy ‘deposited’ into a sample per

unit mass is the dose (Gy or J kg�1). The mass of our spherical

crystal is simply its density (�) multiplied by its volume

Vxtal = 4	R3/3 and the available energy is the photon energy

(Eph) multiplied by the number of photons that were not

transmitted. The latter is the number of incident photons

(Ibeam � 	R2) multiplied by the fraction 1 � Tsphere(0, �, R)

(see equation 5). In this way, the calculation of dose is related

to that of the attenuation factor (A) because the process of

dose deposition begins with a photon–atom interaction, but
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not every interaction deposits the full photon energy as dose.

Some photons are merely scattered, depositing little or no

energy, and in some cases absorbed energy is fluoresced away

(Paithankar et al., 2009). Seltzer (1993) accounted for such

energy-loss mechanisms by assuming that only low-energy

charged particles represent a ‘deposit’ of dose and tabulated

the result as the mass energy-absorption coefficient �en.

Operationally, calculating absorption instead of attenuation

amounts to substituting �en for �xtal in (5), which leads to

Den ¼
3

4

qeEphIbeamt

R�
½1� Tsphereð0; �en;RÞ�; ð11Þ

where Den is the dose in Gy (J kg�1), qe is the electron charge

(1.6022� 10�19 J eV�1), Eph is the photon energy (eV/photon),

Ibeam is the incident-beam intensity (photons s�1 m�2), t is

the exposure time (s), � is the density of the sphere material

(kg m�3 or g l�1), R is the radius of the sphere (m) and �en is

the mass energy-absorption coefficient of the sphere material

(m�1). The subscript ‘en’ denotes the use of the Seltzer (1993)

coefficient. Note that the 1/R term in (11) is effectively can-

celled by the Tsphere term for typical wavelengths and crystal

sizes. Take, for example, a cube-shaped crystal of the same

width as our sphere, which will transmit Tcube = exp(���2R),

and since the limit of 1 � exp(�x) as x! 0 is x, one can see

that the (1� T) term approaches ��2R when most of the beam

is transmitted. This is generally the case for protein crystals,

but we will keep (11) in its exact form and continue to use the

spherical crystal model for dose and attenuation to avoid

complicating our analysis of the attenuation factor (A) against

resolution with the corners of a rotating cube-shaped crystal.

If the beam profile is not flat (the constant Ibeam case

assumed here and in x2.2) then some parts of the crystal will

absorb more dose than others and these high-dose regions

will ‘count’ more in the diffraction pattern than the low-dose

regions because they experience a brighter part of the beam

(see equation 1). Formally, we may deal with non-uniform

beams as discussed in x2.2 by breaking up the crystal into tiny

cubes that do experience a constant Ibeam and then summing

the resulting diffraction patterns [using equation (4) to

account for the attenuation of each incident and diffracted

beam]. However, we shall see in x2.11 and Appendix C that

such a treatment is unnecessary because the damage-limited

photon yield per spot is independent of Ibeam, obviating the

need to integrate over the beam profile. That is, given a long

enough exposure time every part of the crystal will eventually

‘burn out’ and contribute whatever it will contribute to the

diffraction pattern. Therefore, for simplicity, we keep the

‘average dose’ given by (11) and assume that the entire crystal

is ‘evenly cooked’ with no significant microscopic variation in

the dose across the crystal.

2.10. Photoelectron escape and the meaning of ‘dose’

Cowan, Nave and Hill (Nave & Hill, 2005; Cowan & Nave,

2008) have pointed out that as the size of a protein crystal (R)

is reduced it eventually approaches the size of a primary

photoelectron track (RPE) and the electrons themselves will

start to escape. When this happens, the energy ‘deposited’

within the crystal (dose) will be less than that predicted by

(11).

In general, dose calculations are not simple and although a

sphere is the simplest possible shape, (11) comes with certain

caveats. For example, if R becomes large compared with �en
�1

of the crystal material then some fraction of the photons

scattered from the core will be absorbed before escaping the

sphere and some of the energy discounted to scattering by

Seltzer must be added back to the dose. A similar correction

must also be made for energy assumed to be lost to fluores-

cence if R becomes large compared with �en
�1 for the energy of

the fluorescent photons (Paithankar et al., 2009). Conversely,

as R becomes comparable to RPE the dose given by using �en

will be too high.

Fundamentally, the flow of energy between attenuation and

radiation damage is a shower of particles which quickly divides

the energy of the initial photon among a large number of

atoms distributed in space. For example, a photoelectric

absorption event results in an excited atom and a photoelec-

tron (Einstein, 1905; Hubbell, 2006) and the excited atom then

relaxes by emitting a fluorescent photon (Moseley, 1913) or

more electrons via Auger (Meitner, 1922; Auger, 1925) or

Coster–Kronig (Coster & Kronig, 1935) processes (ICRU,

1983). These particles travel some distance before colliding

with another atom and this cascade continues, with the

number of excited atoms increasing and the magnitude of

transferred energy decreasing with each subsequent collision.

However, the distribution of events is not entirely random, as

energy transfer requires an allowed electronic transition in the

material. Initially, at high energies, the number of allowed

transitions is small (photoelectric absorption by deep shells

and scattering), but the list of possible transitions increases

dramatically at lower energy. Chemical transformations take

place once the magnitude of energy transfer approaches that

of the strongest chemical bonds in the sample (�1 eV or

100 kJ mol�1) and there are a very large number of such states

excited by a single X-ray photon.

Unfortunately, such a complete treatment of energy flow

is not only beyond the scope of this work but is beyond the

current understanding of radiation physics in complex sub-

stances. For example, the available transitions or ‘oscillator

strength’ in pure water between 30 and 100 eV are still poorly

understood (Garrett et al., 2004). Dose calculations with

particle-tracking simulation codes such as EGS (Nelson et al.,

1985; Kawrakow & Rogers, 2001; Edimo et al., 2008) or MCNP

(Hendricks et al., 2000; Chiavassa et al., 2005; Chibani & Li,

2002) take into account carefully tabulated single- and double-

differential cross-sections of all known interactions between

atoms, photons and electrons, but once a particle energy drops

below 1 keV it is added to the ‘dose’ because this is where

most of the cross-section tabulations end. This means that

even these highly sophisticated dose calculations will system-

atically underestimate track lengths by the range of 1 keV

electrons. Cole (1969) measured this to be �0.06 mm in

collodion plastic, so MCNP will overestimate the dose to

crystals of the order of 60 nm and smaller.
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Perhaps the most important caveat is that photoelectron

escape formally violates the fundamental dosimetric principle

of charged-particle equilibrium (CPE; Attix, 1986; Moussa et

al., 2006), making simulation results difficult to interpret. The

concern over violating CPE arises because more than half of

the energy ‘deposited’ by a photoelectron is not in the form

of ionizations but rather charge-neutral electronic excitations.

Significantly more energy is deposited in this non-ionizing

form at the beginning of an electron track than at the end

(ICRU, 1983). No doubt this energy destabilizes the molecules

that receive it, but probably not in the same way as energy

deposited by ionizing interactions. Since it is not clear which

kind of energy transfer is relevant to the fading of diffraction

spots, the impact of ‘dose’ may vary along the track.

To date, all dose-calibrated radiation-damage measurements

have been conducted with samples larger than the relevant

photoelectron tracks and the dose has been calculated using

coefficients such as �en, so we shall continue to use �en for

dose in this work. However, in anticipation of future devel-

opments we shall introduce a Nave–Hill ‘capture fraction’ fNH

to represent the fraction of the conventionally calculated dose

Den from (11) remaining in the crystal and contributing to the

‘true’ dose (Dreso) that is relevant to resolution-degrading

chemical transformations. For large crystals in �1 Å X-ray

beams we assert that fNH = 1 and in our highly symmetric case

of a uniform beam and a spherical crystal in a vacuum this

correction can only depend on the radius of the crystal R and

the X-ray photon energy (Eph). Although an exact expression

cannot be derived at this time, a rough estimate of fNH is useful

for detecting when a crystal has reached a size where the

Nave–Hill effect may have a significant impact. Since photo-

electrons are preferentially emitted in a direction normal to

the incident beam and deposit energy more-or-less evenly

along their track, it is assumed here that the rough effect of

photoelectron escape will be to enlarge the volume over which

the dose is deposited in a single direction and thereby reduce

the dose to the crystal by a fraction

fNHðR;EphÞ ¼
Dreso

Den

’
R

Rþ RPEðEphÞ
; ð12Þ

where Eph is the photon energy (eV/photon), R is the radius of

the spherical crystal (m) and RPE(E) is the range of a photo-

electron of energy E derived by Cole (1969) (m). Note that

for simplicity the K-shell energy of the atom that emits the

photoelectron has not been deducted from the photon energy

before applying it to Cole’s formula, nor have Compton

electrons been considered, but these are not likely to be the

largest source of error in (12). It must be stressed that this

equation is a very rough estimate only and could easily be

off by a factor of two or more when R << RPE. However, it is

instructive to show that fNH is expected to reduce the dose

roughly as the first power of R once R becomes less than RPE.

To demonstrate the potential variability of fNH calculations,

we conducted MCNP (Hendricks et al., 2000) simulations of a

sphere with radius R and the density and atomic composition

of a protein crystal given in x2.5 illuminated in a vacuum by

X-rays of various energies. The resulting minimum crystal

sizes are plotted against those obtained using (12) in Fig. 2.

Note that certain conclusions such as the optimum photon

energy to use clearly depend on how fNH is calculated. The

MCNP calculation is probably more reliable than the

simplistic model in (12), but the caveats mentioned above

have yet to be addressed.

2.11. Radiation damage

The radiochemical mechanism behind the fading of diffrac-

tion spots is not presently clear (Garman & Nave, 2009), but

the connection to dose has been calibrated experimentally.

Specifically, it was pointed out by Holton (2009) and Howells

et al. (2009) that the general trend reported by Howells et al.

(2009), namely D1/2 ’ 10d MGy, where d is the feature size in

Å, is remarkably consistent with the independent observations

of both Owen et al. (2006) and Kmetko et al. (2006) (see Fig. 3)

if the average spot intensity at a given resolution fades

exponentially,

hIi ¼ hIiND exp � lnð2Þ
Dreso

Hd

� �
; ð13Þ

where hIi is the average spot intensity (photons/spot) after

absorbing a dose Dreso, hIiND is the average spot intensity

(photons/spot) expected in the absence of radiation damage,

ln(2) is the natural log of two (�0.7), Dreso is the deposited

dose that is relevant to spot fading (MGy), H is the criterion of

Howells et al. (2009) (10 MGy Å�1) and d is the d-spacing

in Å.

Note that here we use Dreso because it was defined in the

last section as the resolution-degrading dose, but for currently
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Figure 2
Wavelength-dependence of the minimum required crystal size. All
plotted calculations used VM = 2.4 Å3 Da�1, Wilson B = 0 and four
photons/hkl in the indicated resolution bin. The crystal size required for
2 Å data from lysozyme and 3.5 Å data from a 100 kDa protein are
essentially identical as these cases balance scattering power with data-
quality requirements. Solid lines were calculated neglecting photoelec-
tron escape (fNH = 1) and dotted lines represent two different models for
photoelectron loss: that given by (12) (orange) and a full particle-tracking
dose calculation with the program MCNP (blue). The sharp reversal of
the curves at low energy is a consequence of the onset of backscattering,
where the Lorentz factor spikes.



available spot-fading data this is the same as Den from (11)

(fNH = 1). We use angle brackets hi to emphasize that (13)

describes the decay of average spot intensity at a given

d-spacing, as opposed to the decay of any particular spot.

Realistically, individual spots may follow different paths of

decay that are not necessarily exponential (Blake & Phillips,

1962; Banumathi et al., 2004), but in this work we are only

interested in the average spot intensity in a given resolution

bin and the argument for (13) is based largely upon spot-

fading measurements.

The meta-analysis of Howells et al. (2009) did not include

the observations made by Owen et al. (2006) or Kmetko et al.

(2006), but we reproduce in Fig. 3 the observations presented

in these works superimposed on predictions made by our

radiation-damage model (H model) and the dose-dependent

B-factor model (B model) suggested by Kmetko et al. (2006).

We selected PDB entries 2clu and 1lz8 as representative of

apoferritin and lysozyme, respectively, because 2clu claims a

similar resolution limit to that observed in Owen et al. (2006)

and 1lz8 is the entry for lysozyme reported by Kmetko et

al. (2006). It should be noted that the same value of H

(10 MGy Å�1) was used for all ‘H model’ curves in Fig. 3 and

this was not ‘fitted’ to the plotted data points in any way, so

the agreement between all observations and the ‘H model’

predictions (solid lines) is quite remarkable. In fact, the

‘H model’ predictions in Fig. 3(b) were intentionally offset to

pass through the origin so that the ‘H model’ lines would not

obscure the least-squares fitted lines of the ‘B model’. In this

work we use the ‘H model’ because it is in best agreement

with both these studies as well as 20 other radiation-damage

experiments surveyed by Howells et al. (2009).

However, spot-fading experiments measure the same spots

over and over again and we are interested in the total accu-

mulated intensity hIiDL at the ‘damage limit’ (TDL), so we

must integrate (13) over time. This integral is performed in

Appendix C, where we show that integrating over an expo-

nential decay is equivalent to accumulating a nondecaying

intensity for less time, and applying the proportionality

constant gives

hIiDL ¼
hIiND

tDS

0:1fdecayed4Hd�R�

3 lnð2ÞfNHhcIbeam½1� Tsphereð0; �en;RÞ�
; ð14Þ

where hIiDL is the average damage-limited intensity (photons/

spot) at a given resolution, hIiND is the average spot intensity

(photons/spot) expected in the absence of radiation damage,

tDS is the exposure time for the data set (s), 0.1 is a factor for

converting three units � from Å to m, � from g cm�3 to kg m�3

and MGy to Gy, fdecayed is the fractional progress toward

completely faded spots at end of the data set, H is Howells’s

criterion (10 MGy Å�1), d is the resolution of interest (Å), � is

the X-ray wavelength (Å), R is the radius of the spherical

crystal (m), � is the density of the crystal (�1.2 g cm�3), fNH

is the Nave–Hill dose-capture fraction, h is Planck’s constant

(6.626 � 10�34 J s), c is the speed of light (299 792 458 m s�1),

Ibeam is the incident-beam intensity (photons s�1 m�2) and

�en is the mass energy-absorption coefficient of the sphere

material (m�1). Note that the ‘damage limit’ was defined in

Appendix C as the point when spot intensity has decayed by
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Figure 3
Radiation-damage model. The observations made by Owen et al. (2006)
and Kmetko et al. (2006) are reproduced with permission from the
original publishers and plotted against predicted curves derived from two
alternative radiation-damage models. The ‘H model’ is an exponential
decay of spot intensity with dose and the ‘B model’ is the dose-dependent
B-factor model suggested by Kmetko et al. (2006). The ‘H model’
predictions were made by applying (13) to intensities derived from the
observed structure-factor file deposited with the indicated PDB entry and
then computing the sum of all intensities (a) followed by scaling the
‘simulated damage’ intensities to the ‘zero-dose’ intensities (b) using the
procedure described by Kmetko et al. (2006). The ‘B model’ prediction
curves (dotted lines) were prepared similarly except that the ‘simulated
damage’ intensities were generated by applying the relevant dose-
dependent B factor reported by Kmetko et al. (2006). All ‘H model’
curves (solid lines) used the same value of H (10 MGy Å�1) and
therefore may explain the dissimilar ‘sensitivity parameter’ observed by
Kmetko et al. (2006) for apoferritin and lysozyme (orange circles versus
blue squares, respectively). It is clear from (a) that the ‘B model’ is at
odds with the observations of Owen et al. (2006) (green diamonds),
although the same predicted intensities are in very good agreement with
the data points from Kmetko et al. (2006) (orange circles). Agreement
between these two studies is restored, however, if we accept the ‘H
model’ where the resolution-dependence of radiation damage is
exponential as opposed to a Gaussian (B model).



some fraction (fdecayed) of the initial ‘undamaged’ value. For

example, Owen et al. (2006) recommended ending the data

collection when the average spot intensity fades to �0.7 of the

undamaged value (fdecayed = 0.3), but the level of concern over

radiation damage for a particular project may inspire some

investigators to exceed this limit or set a more conservative

limit (Holton, 2009).

The value of hIiND is simply the average value of spot

intensity as given by (1) and computation of this average was

accomplished by replacing the terms in (1) that vary from spot

to spot with their average values and also by substituting !eff

from (10) to convert spot intensities into merged hkl inten-

sities,

hIiND

tDS

¼ Ibeamr2
e

Vxtal

Vcell

�
4nsymop

2	

�3

Vcell

hLPifobs � A � hF
2i: ð15Þ

We may now substitute hIiND/tDS from (15) into (14) and then

replace hLPifobs, hF
2
i, Vcell and Vxtal with their expanded

forms from (6), (9), (7) and 4	R3/3, respectively, to yield the

fully qualified expression for damage-limited spot intensity,

hIiDL ¼
2	

9

105r2
e

hc

fdecayed�R4�4

fNHnASUMrV
2
M

0:5�H

lnð2Þ sin �

Tsphereð2�; �;RÞ

½1� Tsphereð0; �en;RÞ�

�
ð3þ cos 4�Þ

sin �

hf 2
a i

hMai
exp �2B

sin �

�

� �2
" #

; ð16Þ

where hIiDL is the average damage-limited intensity (photons/

hkl) at a given resolution, 105 is a factor for converting four

units: R from mm to m, re from m to Å, � from g cm�3 to

kg m�3 and MGy to Gy, re is the classical electron radius

(2.818 � 10�15 m), h is Planck’s constant (6.626 � 10�34 J s), c

is the speed of light (299 792 458 m s�1), fdecayed is the frac-

tional progress toward completely faded spots at the end of

the data set, � is the density of the crystal (�1.2 g cm�3), R is

the radius of the spherical crystal (mm), � is the X-ray wave-

length (Å), fNH is the Nave–Hill dose-capture fraction (1 for

large crystals; Nave & Hill, 2005), nASU is the number of

proteins in the asymmetric unit, Mr is the molecular weight of

the protein (Da or g mol�1), VM is the Matthews coefficient

(�2.4 Å3 Da�1), H is Howells’s criterion (10 MGy Å�1), � is

the Bragg angle, hf2
ai is the number-averaged squared structure

factor per protein atom (electron2), hMai is the number-

averaged atomic weight of a protein atom (�7.1 Da), B is the

average (Wilson) temperature factor (Å2), � is the attenuation

coefficient of the sphere material (m�1) and �en is the mass

energy-absorption coefficient of the sphere material (m�1).

Note that the incident-beam intensity (Ibeam) is missing from

this equation because spot intensity was integrated out to the

‘damage limit’ where the average spot has decayed by a given

fraction (fdecayed). Note that the crystal symmetry is also

missing, as the nsymop term from (10) was cancelled by another

nsymop term in the expression for the average structure factor

(7), implying that the damage limit is more closely related to

the number of molecules in the crystal than it is to the number

of unit cells. One R in the R4 term is effectively cancelled by

the (1 � T) term for all but the very largest protein crystals

and one � term is roughly cancelled (within �30% between 7

and 17 keV) by the hLPifobs factor.

Although (16) may appear somewhat intimidating, it is both

instructive and useful to examine it in this expanded form as

this eases the incorporation of different macromolecule types,

radiation-damage models and crystal shapes. For example,

hfa
2
i, hMai, � and �en may be replaced with appropriate values

for nucleic acids. The ln(2) term arises from the definition of

H as the dose required to reduce spot intensities at a given

d-spacing (d = 0.5�/sin�) by half, so Hd and ln(2) are grouped

together. Crystals that are more sensitive than normal to

radiation damage per unit of dose, as was reported for dodecin

by Murray et al. (2005), may be represented by using a smaller

value of H and a more sophisticated resolution-dependent

damage model might replace Hd/ln(2) with an arbitrary

function H(d). Also, considering the crystal to be a cube with

edge 2R instead of a sphere of radius R simply changes

the leading 2	/9 term to unity and replaces Tsphere with

exp(��en2R). The increased scattering power of the cube

arises because (2R)3 is roughly twice 4	R3/3 and the damage-

limited intensity (photons/hkl) scales linearly with crystal

volume.

3. Results and discussion

We are now prepared to calculate the diameter of the smallest

protein crystal that can be expected to produce a complete

data set on an ideal diffractometer: a very large perfect

detector, a perfect shutter and a perfect spindle with a uniform

and flicker-free X-ray beam bathing a spherical protein crystal

in a vacuum. The noise from such a machine is dominated by

photon counting, so if we require a signal-to-noise ratio (SNR)

of 2.0 in the outer resolution bin of say 2 Å then the average

hkl in this bin must accumulate at least four photons

(I/
 = I/I1/2). If there are other sources of noise, such as

background scattering, then more than four photons will be

required, but since it is theoretically possible to reduce

background to a negligible level (see x3.2), we will begin with

this limiting case.

3.1. Zero-background case

We begin by neglecting the Nave–Hill effect because it has

yet to be measured and represents the greatest unknown in

the dose calculation. With fNH = 1, (16) predicts that a 1.2 mm

diameter sphere of perfect lysozyme crystal (B = 0;

Mr = 14 300 Da; VM = 2.0 Å3 Da�1) in a beam of 1 Å X-rays

will scatter an average of 4 photons/hkl (hIiDL) at 2 Å

resolution before the radiation-damage limit is reached

(fdecayed = 0.3). This limit is independent of exposure time or

beam flux since the total accumulated fluence (photons/area)

is dictated by the damage limit.

If we now involve fNH from (12) or from MCNP simulations

then the four-photon lysozyme crystal size shrinks to 0.5 or

0.34 mm, respectively. In addition to this, if we allow the spots

to fade away completely (fdecayed = 1) then 0.81 mm (fNH = 1),

0.28 mm (equation 12) or 0.19 mm (MCNP) crystals will yield
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4 photons/hkl at 2 Å. There are a number of reasons why

complete decay is not a realistic damage limit, not the least

of which is the biological relevance of the results (Owen et al.,

2006), but it is instructive to consider an infinite exposure time

here because photon counting is the only kind of noise that is

theoretically impossible to eliminate.

Immediately, the next questions to ask are how this limit is

influenced by the choice of photon energy, desired resolution,

degree of disorder in the crystal and molecular weight of the

protein or combinations thereof. (16) is the exact formula for

relating all these quantities, but as the questions to be asked

occupy a large multidimensional parameter space it is in-

structive to graph the influence of each parameter separately.

Since many of the variables in (16) change with the X-ray

wavelength, we begin by plotting the minimum crystal size

against photon energy in Fig. 2. This graph is similar to the ‘IE’

quantity obtained by Arndt (1984), except that here the y axis

is on an absolute scale. The energy-dependence is remarkably

flat and this result is consistent with experimental observation

(Gonzalez et al., 1994). The ‘spike’ in crystal size at very low

photon energy arises from a sharp upswing in hLPi when the

relp grazes the back of the Ewald sphere just before fobs drops

to zero and the 2 Å curves stop at 3.1 keV because it is not

possible to collect 2 Å data with wavelengths longer than 4 Å.

The minimum-size curve for 4 photons/hkl at 3.5 Å from a

perfect crystal of a 100 kDa protein is provided to fill this low-

energy gap as well as demonstrate how simultaneously

decreasing the scattering power and lowering the desired data

quality can ‘coincidentally’ result in the same crystal size

requirement.

Graphs of minimum crystal size against molecular weight

(Fig. 4), nASU, fdecayed, H and absorption coefficients are all

very similar because each of these terms scales linearly with

crystal volume. An examination of (16) reveals that these

variables are not strongly coupled to any others if R << ��1, as

absorption is proportional to R and attenuation is negligible

in this case. The solvent content VM dependence is also not

graphed because this is just a plot of a square-root function

passing through 1.2 mm for VM = 2.0 Å3 Da�1, � = 1 Å, d = 2 Å

and B = 0.

The graph of minimum crystal size against desired resolu-

tion may curve upward or downward depending on the value

chosen for the Wilson B factor (dashed lines in Fig. 5) and

indeed it is not surprising that the degree of disorder in a

protein crystal has a strong influence on the diffraction limit.

What is surprising is that if the B factor is always selected

to follow the empirically derived formula (B = 4d2 + 12)

presented by Holton (2009), one obtains the straight solid

lines in Fig. 5. This remarkable result appears to be a conse-

quence of this B-factor formula effectively cancelling the

resolution-dependence of the average atomic form factor (8),

implying that the number of photons required to detect

the weakest spots is relatively fixed from crystal to crystal.

Regardless of the origin, Fig. 5 immediately suggests an

empirical formula for the required crystal size given an

observed resolution limit,

2R ¼ 0:011ðhIiDLMrÞ
1=3 exp

4:74

d

� �
; ð17Þ

where 2R is the required diameter of the crystal (mm), 0.011 is

a scale factor assuming VM = 2.4 Å3 Da�1, hIiDL is the desired

damage-limited intensity (photons/hkl) at a given resolution,

Mr is the molecular weight of the protein (Da or g mol�1) and

4.74 = 4	2ra
2, where ra is the radius of gyration of a protein

atom (Å) and d is the resolution of interest (Å). This is not to

say that a crystal of diameter 2R will diffract to resolution d,

but rather that a crystal of a protein with mass Mr found to

diffract to resolution d probably has a Wilson B factor that will
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Figure 4
Molecular-weight dependence of the minimum required crystal size. All
plotted calculations used VM = 2.4 Å3 Da�1, 1 Å radiation, 2 Å spots and
B = 24 Å2. Without photoelectron escape, the required crystal volume is
simply proportional to molecular weight and the two different models of
photoelectron escape considered here are shown to have significant yet
different effects for crystals smaller than a few micrometres wide, as this is
the linear dimension of a photoelectron track (RPE).

Figure 5
Resolution-dependence of the minimum required crystal size. All plotted
calculations used VM = 2.4 Å3 Da�1 and 1 Å radiation. The Wilson B
factor strongly affects the curvature of the plot of the required crystal size
for a given number of photons, but applying the empirical formula shown
serendipitously simplifies this analysis, as described in the text.



require the crystal to be of diameter 2R to yield a complete

data set. Until now, we have assumed that an outer resolution

bin (hIiDL) need only gather 4 photons/hkl, but it appears that

the ‘detection limit’ of current technology is much higher than

this (described in the next section) and a value of hIiDL = 100–

200 photons/hkl is suggested for the practical use of (17)

depending on the background level.

3.2. Background scattering

X-ray background consists of scattering from air, aperture

walls, fluorescence, disorder in the crystal and potentially

many other sources. A full theoretical treatment of back-

ground and all other possible sources of noise in a diffraction

experiment is well beyond the scope of this work, but we shall

briefly describe here how the large gap between our calculated

absolute minimum crystal size and those that have been

determined experimentally is completely explained by back-

ground scattering alone.

A summary of experimental minimum crystal-size deter-

minations was provided by Holton (2009), who related scat-

tering power to data quality with an empirical ‘difficulty

parameter’ (n0) that increases with the quality of data needed

for ‘success’ and decreases as instrument capabilities improve.

The ‘record’ for obtaining a complete data set was n0 = 3.1,

but entering the parameters obtained in the last section into

equation (3) of Holton (2009), nxtals = 1 (number of crystals

used), d = 2.0 Å (resolution limit), B = 0, VM = 2.0 Å3 Da�1

and ‘xyz = 1.2 mm (crystal ‘size’), we obtain n0 = 0.2. This

is a factor of 15 improvement over the ‘record’ and using

‘xyz = 0.34 mm, as expected from the more optimistic photo-

electron escape model, we arrive at n0 = 0.0044, which is

700-fold less scattering power than has ever been used to

collect a complete data set.

There are many possible reasons why extant beamlines may

not have reached the theoretical limit, but what is clear is that

more than four photons are presently required to detect

the faintest spots. Indeed, the n0 = 3.1 case corresponds to

64 photons/hkl [if the cubic crystal volume in Holton (2009)

is taken to be Vxtal here]. Formally, this must arise from

additional noise inflating 
(I) beyond simply I1/2, requiring

increased I (photons/hkl) to bring I/
(I) back up to 2.0. An

obvious source of additional noise is background scattering, so

we now generalize our formula for the average signal-to-noise

ratio (SNR) in the outer resolution bin from simply hIi1/2
DL to

SNR ¼
hIiDL

hIiDL þmnpixIBG

TDL

nimages

þ 
2
other

 !1=2
; ð18Þ

where hIiDL is the average damage-limited intensity (photons/

hkl), m is the mean multiplicity (spots/hkl, counting partials as

distinct spots), npix is the number of pixels involved in the

average spot, IBG is the average background scattering rate

(photons pixel�1 s�1) at the resolution of interest, TDL is the

damage-limited exposure time of the data set (s), nimages is the

number of diffraction images in the data set and 
other is the

root-mean-square of all other sources of noise (placed on a

one-photon scale).

For a given camera and sample, the observed background

photons/pixel on a single diffraction image will be propor-

tional to the per-image exposure time (timage = TDL/nimages),

indicating how IBG is fixed for a given experiment. Since we are

considering a damage-limited experiment, the total number

of background photons that fall on the detector (IBGTDL) is

also fixed, regardless of how these photons are divided into

images. The practice of ‘fine-slicing’ (Pflugrath, 1999) reduces

IBGtimage, at the expense of increasing m, but in the limit of

‘infinite’ fine-slicing the quantity mIBGtimage approaches a

constant because the background that actually falls into the

three-dimensional integration region of a given spot cannot be

avoided by finer slicing. Very fine slicing will start to make

other sources of noise important, such as detector read-out

noise, so this and all other sources of noise are lumped into


other for completeness. Nevertheless, with our hypothetical

ideal diffractometer 
other will be negligible.

Choosing some reasonable parameters (m = 4, npix = 5 � 5)

(18) is solved for SNR = 2.0 and hIiDL = 64 photons/hkl by

IBGtimage = 10 photons pixel�1. It must be stressed that this

is a very rough approximation, particularly since n0 was not

claimed to be accurate to better than a factor of two and such

an error propagated through (18) becomes a factor of four in

background level. Nevertheless, this IBGtimage is exactly that

observed near the faintest spots shown in Fig. 4 of Moukha-

metzianov et al. (2008), the source of our n0 = 3.1 ‘record’ (the

detector registers 1.0 pixel levels per photon and has a ‘zero’

offset of 20 pixel levels).

The experience of the authors of this work is that

10 photons pixel�1 is on the low side of the range of back-

ground levels seen on typical diffraction images. It is more

common to see hundreds of photons per pixel from crystals

that only diffract to modest resolutions because the same

disorder that leads to faint spots also produces diffuse scat-

tering (James, 1962; Welberry, 2004). If we keep npix = 5 � 5

and m = 4 as above and IBGtimage = 25, 100 or even

400 photons pixel�1, then satisfying SNR = 2 in (18) requires

hIiDL to be 102, 202 or 402 photons/hkl, respectively.

Note that reducing the multiplicity (m) by collecting the

bare minimum number of images will result in no net ‘gain’

so long as the damage limit is reached at the end of data

collection because the increased exposure time per image will

increase IBGtimage to exactly compensate for any reduced

multiplicity (m). On the other hand, considerable gains can be

had by making the absolute background counts (photons

pixel�1 s�1; IBG) lower, reducing the number of pixels occu-

pied by spots on the detector (npix) or both.

Background scattering can never be completely eliminated,

but the noise it adds to the spots can be minimized by making

the spot size very small. A detailed discussion of spot size is

beyond the scope of this work, but theoretically very small

spots can be achieved with a perfect protein crystal (no mosaic

spread), a near-zero emittance beam of very short wavelength

X-rays focused on an enormous and noiseless detector with no

point-spread function, very small pixels and very fine rotation
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steps. Therefore, IBG can be reduced to near zero, or at least to

the point where the noise from background is insignificant

(hIiDL >> mnpixIBGtimage in equation 18), implying that (16)

with hIiDL set to 4 photons/hkl represents an absolute and

fundamental limit. That is, unless some way is found to change

one of the parameters in (16), such as increasing H by miti-

gating the chemistry of global damage or decreasing fNH with

photoelectron escape, a lysozyme crystal smaller than 1.2 mm

will never yield a complete data set to 2 Å.

3.3. Implications for micro-focus beams

The 1.2 mm size limit for perfect lysozyme crystals deter-

mined here does not imply that crystals and X-ray beams

smaller than �1 mm are useless. If a complete data set cannot

be obtained from one crystal then a multi-crystal strategy

(Kendrew et al., 1960; Dickerson et al., 1961), a ‘needle-

scanning’ strategy (Moukhametzianov et al., 2008) or perhaps

the ‘serial crystallography’ approach proposed by Starodub et

al. (2008) may be employed, but the total scattering volume

will have to add up to the volume of a sphere given by R in

(16) using fNH for the individual crystal size. For example, the

volume needed for one crystal of a 100-crystal data set

with final merged hIiDL = 4 photon/hkl is given by using

hIiDL = 0.04 photon/hkl in (16).

Crystals with larger unit cells or more disorder (or both) will

have to be larger than their ‘perfect lysozyme equivalent’

volume. For example, a lysozyme crystal with a more realistic

Wilson B factor of 20 Å2 must be 2.8 mm wide to produce

4 photons/hkl in the 2 Å bin using the fdecayed = 0.3 damage

limit and a 10 MDa asymmetric unit with VM = 2.4 Å3 Da�1

and B = 61 Å2 must form a crystal 15 mm wide to produce

4 photons/hkl at 3.5 Å. However, as the present ‘detection

limit’ appears to be of the order of 100 photons/hkl

(IBGtimage ’ 100 photons pixel�1), these realistic lysozyme

crystals will have to be 8.3 mm in diameter for 2 Å data, and

3.5 Å data from the 10 MDa case will require 43 mm crystals,

limiting the usefulness of X-ray beams smaller than this.

4. Conclusions

The minimum useful protein crystal size is limited by the

background photons that accumulate in the detector pixels

occupied by a spot and current technologies seem to require of

the order of 100 photons/hkl (after merging) to attain a signal-

to-noise ratio of 2. The choice of X-ray wavelength appears

to have only a minor impact on the damage-limited scattering

power of a crystal, which remains proportional to the crystal

volume and inversely proportional to both the molecular

weight of the asymmetric unit and the square of the Matthews

coefficient (Matthews, 1968) for all practical purposes. The

resolution-dependence is complicated by the Wilson B factor,

but relating B to d-spacing empirically revealed that damage-

limited scattering power is proportional to exp(�14.2/d),

where d is the d-spacing of interest. Dose reduction owing to

photoelectron escape appears to be theoretically promising

but difficult to predict and the current detection limit for spots

will have to be overcome for this effect to be of practical use

for typical single-crystal data sets at accessible photon ener-

gies.
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